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Online Age-minimal Sampling Policy for
RF-powered IoT Networks

Mohamed A. Abd-Elmagid, Harpreet S. Dhillon, and Nikolaos Pappas

Abstract—In this paper, we study a real-time Internet of Things
(IoT)-enabled monitoring system in which a source node (e.g., IoT
device or an aggregator located near a group of IoT devices) is
responsible for maintaining the freshness of information status
at a destination node by sending update packets. Since it may
not always be feasible to replace or recharge batteries in all
IoT devices, we consider that the source node is powered by
wireless energy transfer (WET) by the destination. For this
system setup, we investigate the optimal online sampling policy
that minimizes the long-term average Age-of-Information (AoI),
referred to as the age-optimal policy. The age-optimal policy
determines whether each slot should be allocated for WET or
update packet transmission while considering the dynamics of
battery level, AoI, and channel state information (CSI). To solve
this optimization problem, we model this setup as an average cost
Markov Decision Process (MDP). After analytically establishing
the monotonicity property of the value function associated with
the MDP, the age-optimal policy is proven to be a threshold-
based policy with respect to each of the system state variables.
We extend our analysis to characterize the structural properties
of the policy that maximizes average throughput for our system
setup, referred to as the throughput-optimal policy. Afterwards,
we analytically demonstrate that the structures of the age-
optimal and throughput-optimal policies are different. We also
numerically demonstrate these structures as well as the impact
of system design parameters on the optimal achievable average
AoI.

Index Terms—Age-of-Information, Internet of things, RF en-
ergy harvesting, Markov Decision Process.

I. INTRODUCTION

The performance of many real-time IoT-enabled applica-
tions is driven by how fresh the collected data measurements
of the IoT devices are when they reach the destination nodes
[1]. The timely delivery of the measurements to the destination
nodes is greatly restricted by the energy-constrained nature
of the IoT devices. To enable a self-perpetuating operation
of IoT networks, radio-frequency (RF) energy harvesting has
emerged as an appealing solution for charging low-power IoT
devices due to its ubiquity and cost efficient implementation.
This necessitates the design of efficient transmission policies
for freshness-aware RF-powered IoT networks, which is the
main objective of this paper.

Related work. To quantify freshness of information at the
destination node, we use AoI as a performance metric. The
authors of [2] introduced the concept of AoI and characterized
average AoI for a simple queueing-theoretic model. Building
on this, a series of works [3]–[6] focused on characterizing the
average AoI and its variations (e.g., Peak Age-of-Information
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[4] and Value of Information of Update [6]) for adaptations
of the queueing model studied in [2]. Another direction of
research [7]–[20] focused on applying various tools from
optimization theory to characterize age-optimal transmission
policies for different communication systems that deal with
time critical information.

The offline/online age-optimal policy for an energy har-
vesting source node was investigated under various system
settings in [13]–[20]. Note that the online age-optimal policy
is obtained when a causal knowledge of energy arrivals is
assumed. A common model of the energy harvesting process
in [13]–[18] is an external point process (e.g., Poisson process)
independent from all system design parameters. In contrast,
when the source is powered by RF energy harvesting, as
considered in this paper, the harvested energy is a function
of the temporal variation of the CSI. This, in turn, means
that the proposed age-optimal policies in [13]–[18] are not
directly applicable to such system settings since one needs
to explicitly incorporate the statistics of CSI in the process
of decision-making. Hence, the analysis of characterizing the
age-optimal policies becomes more challenging. Before going
into more details about our contributions, it is instructive to
note that the problem of age-optimal policy in wireless pow-
ered communication systems has been studied very recently in
[19], [20]. However, neither of the proposed policies took into
account the evolution of the battery level at the source and the
variation of CSI over time in the process of decision-making.
Different from these, this paper makes the first attempt to:
1) characterize the online age-optimal sampling policy while
considering the dynamics of battery level, AoI and CSI, and
2) establish analytically key differences between the structures
of the online age-optimal and throughput-optimal polices.

Contributions. This paper studies a real-time monitoring
system in which an RF-powered source node transmits status
update packets to a destination node over time to keep its
information status as fresh as possible. For this setup, we
study the long-term average AoI minimization problem in
which WET and scheduling of update packet transmissions
are jointly optimized. We model the problem as an average
cost MDP for which we prove the monotonicity property
of its associated value function analytically. Using this, we
show that the age-optimal policy is a threshold-based policy
with respect to each of the system state variables, i.e., the
battery level, AoI, and channel power gains. We further study
the average throughput maximization problem for our system
setup, and demonstrate analytically the difference between the
structures of the age-optimal and throughput-optimal polices.
Our numerical results verify the analytical findings and further
demonstrate the impact of system design parameters on the
optimal achievable average AoI.
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II. SYSTEM MODEL
A. Network Model

We consider a monitoring system in which a source node is
deployed to observe some physical process, such as temper-
ature or humidity. The source node is supposed to keep the
information status of its observed process at a destination node
fresh by sending status update packets. In the context of IoT
networks, the source node could refer to an aggregator located
near a group of IoT devices, which transmits update packets
collected from them to the destination node (for instance, a
cellular base station). We use the concept of AoI to quantify
freshness of information at the destination node. Formally,
AoI is defined as the time elapsed since the recently received
update packet at the destination was generated at the source
[2]. The destination node is assumed to have a stable energy
source whereas the source node is equipped with an RF energy
harvesting circuitry as its only source of energy. Specifically,
the source harvests energy from the RF signals transmitted by
the destination in the downlink. The energy harvested at the
source is stored in a battery with finite capacity Bmax joules.
The source and destination nodes are assumed to have a single
antenna each, and operate over the same frequency channel.
Hence, the source cannot simultaneously harvest wireless
energy in downlink and transmit data in uplink.

Without loss of generality, the time horizon is partitioned
into slots of unit length such that slot k = 0, 1, . . . corresponds
to the time duration [k, k+ 1). We denote by B(k) and A(k)
the amount of available energy in the battery at the source
and the AoI at the destination, respectively, at the beginning
of time slot k. We assume that A(k) is upper bounded by a
finite value Amax which can be chosen to be arbitrarily large,
i.e., A(k) ∈ {1, 2, · · · , Amax}. When AoI reaches Amax, it
means that the information is too stale to be of any use at the
destination node. Let g(k) and h(k) denote the downlink and
uplink channel power gains between the source and destination
nodes over slot k, respectively. The channels are assumed to be
affected by quasi-static flat fading, i.e., they remain constant
over a time slot but change independently from one slot to
another. The destination node has perfect knowledge about
the channel power gains in the current time slot, and only a
statistical knowledge for future slots.

B. State and Action Spaces
At the beginning of an arbitrary time slot k, the state of the

system s(k) is characterized by the battery level at the source,
the AoI value at the destination, and the uplink and downlink
channel power gains, i.e., s(k) , (B(k), A(k), g(k), h(k)) ∈
Sa; where Sa is the state space which contains all the com-
binations of B(k), A(k), g(k), and h(k), and the superscript
a indicates that it is defined for the average AoI minimization
problem. Based on s(k), the action taken at slot k is given
by a(k) ∈ A , {H,T}. When a(k) = H , slot k is dedicated
for wireless energy transfer where the destination broadcasts
RF energy signal in the downlink to charge the battery at the
source. The amount of energy harvested by the source can be
expressed as EH(k) = ηPg(k), where η is the efficiency of
the energy harvesting circuitry and P is the average transmit
power by the destination. On the other hand, when a(k) = T ,

Fig. 1. AoI evolution vs. time when Amax = 4.

slot k is allocated for information transmission where the
source sends an update packet about its observed process
to the destination. We consider a generate-at-will policy [7],
where whenever a time slot is scheduled for information
transmission, the source generates an update packet at the
beginning of that time slot. According to Shannon’s formula,
when the energy consumed by the source to transmit an update
packet of size S in slot k is ET(k), its maximum transmission
rate is log2(1+ h(k)ET(k)

σ2 ) bits/Hz (recall that the slot length is
unity), where σ2 is the noise power at the destination. Hence,
the action T can only be decided if the battery level at the
source satisfies the following condition

B(k) ≥ ET(k) =
σ2

h(k)

(
2S/W − 1

)
, (1)

where W is the channel bandwidth.
In every time slot, the battery level at the source and the

AoI at the destination are updated based on the action decided.
Specifically, if a(k) = T , then the battery level decreases by
ET(k), and AoI becomes one (recall that a generate-at-will
policy is employed); otherwise, the battery level increases by
EH(k) and AoI increases by one. Hence, the evolution of the
battery level and AoI can be expressed, respectively, by

B(k + 1) =

{
B(k)− ET(k), if a(k) = T,

min
{
Bmax, B(k) + EH(k)

}
, otherwise.

(2)

A(k + 1) =

{
1, if a(k) = T,
min {Amax, A(k) + 1} , otherwise. (3)

To help visualize (3), Fig. 1 shows the AoI evolution as a
function of actions taken over time when Amax = 4.

III. PROBLEM FORMULATION AND STRUCTURAL
PROPERTIES OF THE AGE-OPTIMAL POLICY

A. Problem Formulation
Our objective is to obtain the optimal policy, which specifies

the actions taken at different states of the system over time,
achieving the minimum long-term average AoI at the desti-
nation. Particularly, a policy π = {π0, π1, · · · } is a sequence
of action probability measures over the state space. For in-
stance, the probability measure πk specifies the probability
of taking action a(k), conditioned on the sequence sk which
includes the past states and actions, and the current state, i.e.,
sk , {s(0), a(0), · · · , s(k − 1), a(k − 1), s(k)}. Formally, πk
specifies P(a(k) | sk) such that

∑
a(k)∈A(s(k)) P(a(k) | sk) =

1, where A(s(k)) is the set of possible actions at state
s(k) ∈ Sa. The policy π is said to be stationary when
P(a(k) | sk) = P (a (k) | s (k)) ,∀k, and is called deterministic
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if P(a(k) | sk) = 1 for some a(k) ∈ A(s(k)). Under a policy
π, the long-term average AoI at the destination starting from
an initial state s(0) can be expressed as

Āπ , lim sup
K→∞

1

K + 1

K∑
k=0

E [A(k) | s(0)] , (4)

where the expectation is taken with respect to the channel
conditions and the policy. Our goal is to find the online age-
optimal policy π∗ such that

π? = arg min
π

Āπ. (5)

B. Proposed Solution
Due to the nature of evolution for the battery level and

AoI, as described by (2) and (3), and the independence of
channel power gains over time, the problem can be modeled
as a Markov Decision Process (MDP). In order to obtain
the age-optimal policy by applying standard optimization
techniques such that the Value Iteration Algorithm (VIA) or
the Policy Iteration Algorithm (PIA) [21], we discretize the
battery level and the channel power gains. In particular, we
denote by b(k) ∈ {0, 1, · · · , bmax} the discrete battery level
at slot k, where bmax represents the maximum amount of
energy quanta that can be stored in the battery such that
each energy quantum contains Bmax

bmax
joules. In this case, the

quantities ET(k) and EH(k) in (2) should be replaced by
two integer variables expressed in terms of energy quanta. By
letting, eT(k) ,

⌈
bmax

Bmax
ET(k)

⌉
and eH(k) ,

⌊
bmax

Bmax
EH(k)

⌋
,

the dynamics of the battery for the discrete model can be
expressed as

b(k + 1) =

{
b(k)− eT(k), if a(k) = T,

min
{
bmax, b(k) + eH(k)

}
, otherwise,

(6)

where we used the ceiling and floor in the definitions of eT(k)
and eH(k) to obtain a lower bound to the performance of the
continuous system. Clearly, an upper bound to the performance
of the continuous system can be obtained by reversing the use
of the floor and ceiling in the definitions of eT(k) and eH(k).
Similarly, if the channel power gains are modeled by continu-
ous random variables, we divide them into a finite number of
intervals with the same probability according to the probability
density function (PDF) of the fading gain. Each interval is then
represented by a discrete level of channel power gain which
has the same probability as that of this interval. In this sense,
the problem is modeled as a finite-state finite-action MDP with
state s(k) , (b(k), A(k), g(k), h(k)) ∈ Sad (the state space of
the discrete model), for which there exists an optimal station-
ary deterministic policy [21]. Therefore, in the remaining, we
investigate this age-optimal stationary deterministic policy and
omit the time index. Given a stationary deterministic policy π,
the transition probability from state s = (b, A, g, h) to state
s′ = (b′, A′, g′, h′) is given by

P
(
s′ | s, π(s)

)
, P

(
b′, A′, g′, h′ | b, A, g, h, π(s)

)
(a)
= P

(
b′, A′ | b, A, g, h, π(s)

)
P(g′)P(h′)

(b)
= P

(
b′ | b, g, h, π(s)

)
P
(
A′ |A, π(s)

)
P(g′)P(h′), (7)

where π(s) denotes the action taken at state s according to
π. Step (a) follows from the independence of the channel
power gains over time and from other random variables; where

P(g′) and P(h′) denote the probability mass functions for the
downlink and uplink channel power gains (after discretiza-
tion if they are modeled originally by continuous random
variables), respectively. Step (b) follows since given s and
π(s), the next battery level b′ and value of AoI A′ can be
obtained deterministically in a separable manner. Specifically,
b′ only depends on the current battery level and channel power
gains, i.e., (b, g, h), and A′ is only function of its current
value A. Thus, from (3) and (6), b′ and A′ can be determined,
respectively, as

P(b′ | b, g, h, π(s)) =

1
(
b′ = b− eT

)
, if π(s) = T,

1

(
b′ = min

{
bmax, b+ eH

})
, otherwise,

(8)

P(A′ |A, π(s)) =

{
1
(
A′ = 1

)
, if π(s) = T,

1
(
A′ = min {Amax, A+ 1}

)
, otherwise,

(9)
where 1(·) is the indicator function. The optimal policy
π? satisfying (5) can be evaluated by solving the following
Bellman’s equation for average cost MDPs [21]

Ā? + V (s) = min
a∈A(s)

Q(s, a), s ∈ Sad , (10)

where Ā? is the achievable optimal average AoI by π? which is
independent of the initial state s(0), V (s) is the value function
and Q(s, a) is the expected cost resulting from taking action
a in state s, which is given by

Q(s, a) = A+
∑
s′∈Sa

d

P(s′ | s, a)V (s′), (11)

where P(s′ | s, a) is evaluated using (7). In addition, the
optimal action taken at state s is given by

π?(s) = arg min
a∈A(s)

Q(s, a). (12)

The value function V (s) can be evaluated iteratively using
the VIA [21]. Particularly, according to the VIA, the value
function at iteration m, m = 1, 2, · · · , is computed as
V (s)(m) = min

a∈A(s)
Q(s, a)(m−1)

= min
a∈A(s)

A+
∑
s′∈Sa

d

P(s′ | s, a)V (s′)(m−1)

 , (13)

where s ∈ Sad . Hence, the optimal policy at iteration m is
given by

π?(m)(s) = arg min
a∈A(s)

Q(s, a)(m−1). (14)

As per the VIA, under any initialization of value function
V (s)(0), the sequence

{
V (s)(m)

}
converges to V (s) which

satisfies the Bellman’s equation in (10), i.e.,
lim
m→∞

V (s)(m) = V (s). (15)

In the next subsection, we explore the structural properties
of the age-optimal policy π? obtained using the VIA. Note
that the obtained analytical results can be derived using the
Relative VIA (RVIA) as well [21].

C. Structural Properties of the Age-optimal Policy
Lemma 1. The value function V (b, A, g, h), satisfying the
Bellman’s equation in (10) and corresponding to the age-
optimal policy π?, is non-increasing with respect to the battery
level b, the downlink channel power gain g and the uplink
channel power gain h. In contrast, V (b, A, g, h) is non-
decreasing with respect to the AoI A.
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Proof: First, to prove that V (b, A, g, h) is non-increasing
with respect to b, let us define s1 = (b1, A, g, h) and s2 =
(b2, A, g, h) where b1 ≤ b2. Hence, the objective is to show
that V (s1) ≥ V (s2). According to (15), it is then sufficient
to show that V (s1)(m) ≥ V (s2)(m),∀m, which we prove
using mathematical induction. Particularly, the relation holds
by construction for m = 0 since it corresponds to the initial
values for the value function which can be chosen arbitrary.
Now, we assume that V (s1)(m) ≥ V (s2)(m) holds for some
m, and then show that it holds for V (s1)(m+1) ≥ V (s2)(m+1)

as well. Particularly, according to (13) and (14), V (s2)(m+1)

and V (s1)(m+1) can be expressed, respectively, as
V (s2)(m+1) = A+

∑
s′2∈S

a
d

P(s′2 | s2, π?(m)(s2))V (s′2)(m)

(a)

≤ A+
∑
s′2∈S

a
d

P(s′2 | s2, π?(m)(s1))V (s′2)(m)

(b)
= A+ C

∑
g′2

∑
h′
2

V (b̄2, Ā, g
′
2, h
′
2)(m), (16)

V (s1)(m+1) = A+
∑
s′1∈S

a
d

P(s′1 | s1, π?(m)(s1))V (s′1)(m)

= A+ C
∑
g′1

∑
h′
1

V (b̄1, Ā, g
′
1, h
′
1)(m), (17)

where C = P(g′i)P(h′i),∀i ∈ {1, 2}. Step (a) follows since
it is not optimal to take action π?(m)(s1) in state s2, and
step (b) follows from (7)-(9) where, for a given π?(m)(s1),
Ā is evaluated based on (9), and b̄2 and b̄1 are determined
using (8). Since b1 ≤ b2, we can observe from (8) that
b̄1 ≤ b̄2 for π?(m)(s1) ∈ A, and hence V (b̄1, Ā, g

′
1, h
′
1)(m) ≥

V (b̄2, Ā, g
′
2, h
′
2)(m). Therefore the expression in (16) is less

than or equal to V (s1)(m+1) which makes V (s1)(m+1) ≥
V (s2)(m+1) and indicates that the value function is non-
increasing with respect to b. Using the same approach, we
can show that V (b, A, g, h) is non-decreasing with respect to
A. Finally, note that increasing g (h) increases eH (reduces
eT) which leads to a larger amount of energy in the battery
at the next time slot and hence a lower value function. This
proves that V (b, A, g, h) is non-increasing with respect to g
and h.

Based on Lemma 1, the following Lemma characterizes
some structural properties of the age-optimal policy π?.

Lemma 2. For any s1 = (b1, A1, g1, h1) and s2 =
(b2, A2, g2, h2), the age-optimal policy π? has the following
structural properties:
(i) When s1 � s2 and b1 ≥ max

{
bmax − eH1 , eT1

}
, if

π?(s1) = T , then π?(s2) = T .
(ii) When s1 � s2 and b2 ≥ max

{
bmax − eH2 , eT2

}
, if

π?(s1) = H , then π?(s2) = H .
Note that the symbols � and � represent the element-wise
inequalities.

Proof: First, we note that proving that π?(s1) = a leads
to π?(s2) = a is equivalent to showing that

Q(s2, a)−Q(s2, a
′) ≤ Q(s1, a)−Q(s1, a

′), ∀a′ 6= a, (18)

where this holds since if a is optimal in state s1, then we
have Q(s1, a)−Q(s1, a

′) ≤ 0,∀a′, which leads to Q(s2, a) ≤

Q(s2, a
′),∀a′, i.e., taking action a is optimal in state s2.

Hence, (i) is proven ((ii) is proven) if (18) holds when a = T
and a′ = H (a = H and a′ = T ). Therefore, in the remaining,
we focus on the proof of (i) while (ii) can be proven similarly.
Particularly, from (7)-(9) and (11), we have

Q(si, T ) = Ai + C
∑
g′i

∑
h′
i

V (bi − eTi , 1, g′i, h′i), (19)

Q(si, H) = Ai + C
∑
g′i

∑
h′
i

V (bmax,min{Amax, Ai + 1}, g′i, h′i),

(20)
where i ∈ {1, 2} and the next battery level in (20) is equal to
bmax since b1 + eH1 ≥ bmax and b1 ≤ b2. Since s1 � s2
and based on Lemma 1, we have V (b1 − eT1 , 1, g

′
1, h
′
1) ≥

V (b2−eT2 , 1, g′2, h′2) (eT1 ≥ eT2 ) and V (bmax,min{Amax, A2+
1}, g′2, h′2) ≥ V (bmax,min{Amax, A1 + 1}, g′1, h′1). Hence,
(18) holds for a = T and a′ = H , which completes the proof
of (i).

Remark 1. Note that according to Lemma 2, the age-optimal
policy π? has a threshold-based structure over the set of states
Sth,ad ,

{
s ∈ Sad : b ≥ max{bmax − eH, eT}

}
. Particularly,

π? is a threshold-based policy with respect to each of the
system state variables, i.e., b, A, g, and h. For instance, for a
fixed (b, g, h), if Ath is the minimum value of AoI for which it
is optimal to take an action a = T , then for all states s ∈ Sthd
such that A ≥ Ath, the optimal decision is T as well. This is
also intuitive, since when the value of AoI becomes large, it is
optimal to update the status of information at the destination
by sending a new status update. In addition, if there exists a
state sth = (bth, Ath, gth, hth), where bth, gth, and hth are
defined similar to Ath, then π?(s) = T, ∀s ∈ Sthd , such that
s � sth.

IV. AGE-OPTIMAL POLICY VS. THROUGHPUT-OPTIMAL
POLICY

In this section, we aim at comparing the age-optimal policy
with the throughput-optimal one. Towards this objective, we
first formulate the average throughput maximization problem
for the system setup presented in Section II. Afterwards, we
investigate the structural properties of the throughput-optimal
policy using which we highlight key differences between the
structures of the age-optimal and throughput-optimal polices.

A. Average Throughput Maximization Formulation and Pro-
posed Solution

When the objective is to maximize the average through-
put, the system state at slot k is defined as s(k) =
{b(k), g(k), h(k)} ∈ Srd , where Srd is the state space of the
discrete model for the throughput maximization problem, i.e.,
when the battery and channel power gain are discretized. Note
that the AoI is not included now in the state of the system.
The action space A is defined similarly as in Section II, where
the source node can either harvest energy or transmit a packet
of size S at each time slot. The evolution of the battery is then
given by (6). Hence, the average throughput maximization
problem is modeled as a finite-state finite-action MDP for
which there exists an optimal stationary deterministic policy
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[21]. Particularly, under a policy µ, the long-term average
throughput is defined as

R̄µ , lim inf
K→∞

1

K + 1

K∑
k=0

E [1 (a(k) = T )S | s(0)] , (21)

where the system receives some reward equal to S in an arbi-
trary time slot only if this slot is allocated for data transmission
to the destination node. Our goal is then to characterize
the throughput-optimal policy µ∗ which maximizes the long-
term average throughput, i.e., µ? = arg max

µ
R̄µ. Under a

stationary deterministic policy µ, the probability of moving
from state s to state s′ can be expressed as

P
(
s′ | s, µ(s)

)
= P

(
b′ | b, g, h, µ(s)

)
P(g′)P(h′), (22)

where P (b′ | b, g, h, µ(s)) can be expressed as in (8). The op-
timal policy µ? can then be obtained by solving the following
Bellman’s equation using the VIA (similar to (13) and (14))

R̄? + V (s) = max
a∈A(s)

Q(s, a), s ∈ Srd , (23)

where R̄? is the optimal average throughput achievable by µ?

and Q(s, a) can be expressed as
Q(s, a) = 1 (a = T )S +

∑
s′∈Sr

d

P(s′ | s, a)V (s′), (24)

where P(s′ | s, a) is computed by (22) and µ?(s) is given by
µ?(s) = arg max

a∈A(s)
Q(s, a). (25)

B. Structural Properties of the Throughput-optimal Policy
Lemma 3. The value function V (b, g, h), corresponding to the
throughput-optimal policy µ?, is non-decreasing with respect
to the battery level b, the downlink channel power gain g, and
the uplink channel power gain h.

Proof: By using (22), the result can be obtained using the
same approach used in the proof of Lemma 1, i.e., by applying
mathematical induction to the iterations of the VIA.

Using Lemma 3, some structural properties of the
throughput-optimal policy are presented by the following
Lemma.

Lemma 4. For any s1 = (b1, g1, h1) and s2 = (b2, g2, h2),
the throughput-optimal policy µ? has the following structural
properties:
(i) When s1 � s2 and b1 ≥ max

{
bmax − eH1 , eT1

}
, if

µ?(s1) = T , then µ?(s2) = T .
(ii) When s1 � s2 and b2 ≥ max

{
bmax − eH2 , eT2

}
, if

µ?(s1) = H , then µ?(s2) = H .

Proof: This result can be proven using the same approach
used in the proof of Lemma 2. Note that since this is a
maximization problem, proving that µ?(s1) = a leads to
µ?(s2) = a is now equivalent to showing that
Q(s2, a)−Q(s2, a

′) ≥ Q(s1, a)−Q(s1, a
′),∀a′ 6= a. (26)

Remark 2. Similar to Remark 1 and based on Lemma
4, we observe that the throughput-optimal policy has a
threshold-based structure over the set of states Sth,rd ={
s ∈ Srd : b ≥ max{bmax − eH, eT}

}
.

Remark 3. Our results in Lemmas 2 and 4 clearly demon-
strate that the structures of the age-optimal and throughput-
optimal policies are different, which will also be verified in
the numerical results section. Specifically, let us consider
a state s̄ = (b̄, ḡ, h̄) ∈ Sth,rd such that µ?(s̄) = T .
Note that since s ∈ Sth,rd , the set of states S̄th,ad =

{(b, A, g, h) : (b, g, h) = s̄, 1 ≤ A ≤ Amax} belongs to Sth,ad .
Similar to the definition of Ath in Remark 1, let us define
Āth = min

({
A : π?(b̄, A, ḡ, h̄ = T )

})
. Now, for a given

state s ∈ S̄th,ad such that A < Āth, according to Lemma
4, we note that π?(s) = H . This indicates that µ?(s̄) and
π?(s) are different even though the states s and s̄ have the
same combination (b̄, ḡ, h̄) which demonstrates the difference
between the structures of the age-optimal and the throughput-
optimal polices.

V. NUMERICAL RESULTS

The downlink and uplink channel power gains between
the source and destination nodes are modeled as g = h =
θψ2d−β ; where θ is the signal power gain at a reference
distance of 1 meter, ψ2 ∼ exp(1) denotes the small-scale
fading gain, and d−β represents standard power law path-loss
with exponent β. In addition, the channel power gains are
discretized into 10 levels. In the following, we use h = i to
refer to the value of the channel power gain at its i-th level.
Unless otherwise specified, we use the following values for
different system parameters: W = 1 MHz, P = 37 dBm,
d = 25 meters, η = 0.5, σ2 = −95 dBm, θ = 4 × 10−2,
β = 2, S = 12 Mbits, Bmax = 0.3 mjoules, Amax = 10 and
bmax = 9.

Verification of Analytical Results. In Figs. 2a and 2b, we
demonstrate the structures of the age-optimal and throughput-
optimal polices. Particularly, each point in both figures repre-
sents a potential state of the system where a red circle point (a
blue square point) indicates that the optimal action at this state
is T (H). The points located inside the solid polygon refer to
the states for which it is possible to take T action, i.e., for
each of those states b ≥ eT. Furthermore, the points located
inside the dotted polygon represent the sets Sth,ad and Sth,rd ,
where the dotted polygon is the same as the solid one in Fig.
2a. We can check that the analytical structural properties of
the optimal polices, derived in Lemmas 2 and 4, are satisfied.
For instance, in Fig. 2a, since the optimal action at the point
(2, 2) is T , we observe that the optimal action at all the points
(x, y), where x ≥ 2 and y ≥ 2, is T as well (Lemma 2, (i)). In
addition, in Fig. 2b, the optimal action at the point (3, 10) is
H , and hence, we observe that it is optimal to take action H
at all the states (x, y) located inside the dotted polygon such
that x ≤ 3 and y ≤ 10 (Lemma 4, (ii)).

Comparison between the Structures of the Age-optimal and
Throughput-optimal Policies. The structure of the age-optimal
policy is plotted for g = h = 10 in Fig. 2a. Hence, the dif-
ference between structures of the age-optimal and throughput-
optimal polices can be captured by comparing the optimal
actions at the points (x, 10) in Fig. 2b with the actions at the
points (x,A) in Fig. 2a, where x ≥ 1 and 1 ≤ A ≤ 10 is
a fixed value of AoI. Specifically, according to the value of
A, we have two different regimes: (i) when A is small (for
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Fig. 2. (a) Structure of age-optimal policy, (b) Structure of throughput-optimal policy, and (c) Impact of battery capacity and size of update packet on Ā?.

instance, A = 1), it is optimal to keep taking action H till
a larger value of battery state in the age-optimal policy than
the case for the throughput-optimal policy, and (ii) when A is
large (A ≥ 3), different from the throughput-optimal policy, it
is always optimal to take action T regardless of the amount of
available energy in the battery according to the age-optimal
policy. This is intuitive since if AoI is small, it is wise to
save the current energy in battery for future update packet
transmissions when the AoI becomes large.

Impact of System Design Parameters on Optimal Average
AoI. Fig. 2c shows the impact of the capacity of battery and
size of update packets on the optimal achievable average AoI
Ā?, satisfying the Bellman’s equation in (10). It is observed
that the achievable average AoI monotonically decreases as
the size of update packets decreases and/or the capacity of
battery increases. This is due to the fact that decreasing the
size of update packets reduces the amount of energy needed to
transmit an update packet, and increasing the battery capacity
allows to store more harvested energy inside the battery. This,
in turn, increases the likelihood that the battery has enough
energy for update packet transmissions when the AoI is large,
and hence the achievable average AoI is reduced.

VI. CONCLUSION

This paper proposed an implementable age-optimal sam-
pling strategy for designing freshness-aware RF-powered IoT
networks. Particularly, the long-term AoI minimization prob-
lem was formulated for a real-time IoT-enabled monitoring
system, in which a source node is powered by wireless
energy transfer by a destination node. To obtain the age-
optimal policy, the problem was then modeled as an average
cost MDP for which the monotonicity property of its value
function, with respect to the system state, was analytically
established. Afterwards, to inspect the difference between the
age-optimal and throughput-optimal policies for our system
setup, we extended our analysis to the average throughput
maximization problem. Multiple system design insights were
drawn from our results. For instance, they demonstrated that
the age-optimal and throughput-optimal policies are threshold-
based policies with significantly different structures. They also
revealed that the optimal average AoI is a monotonically
increasing (decreasing) function with respect to size of update
packets (battery capacity).
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